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Find the area of the 
isosceles triangle in 
the image.

Question: Step 1: Use the formula: Area = (1/2) * 
Base * Height.

Step 2: Substitute the given values: Area 
= (1/2) * 10 * 13, Area = 13 * 7 = 91.

Step 3: The final answer is 91.
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Step 1: Use the formula for the area of a triangle, which is ( 1/2 * base * height). 

Step 2: The perpendicular from the top vertex splits the base into two segments of length 5 each.

Step 3: Use the Pythagorean theorem for one of these right-angled triangles: h^2 + 5^2 = 13^2, h^2 = 13^2 - 5^2, h^2 
= 169 – 25, h^2 = 144. So, h = √144 = 12.

Step 4: Find the isosceles triangle’s area: Area = (1/2 * base * height) = (1/2 * 10 * 12)  = 60.

Step 5: The area of the isosceles triangle is 60. 
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Mathematical Problem Solving: Autoregressive Image Generation:

Enhanced Reasoning Enhanced Generation Process

Existing Reasoning Strategy: Can Similar Strategy be Applied to Image Generation?

Unsatisfactory Reasoning Unsatisfactory Generation Process

Figure 1. Can We Verify and Reinforce Image Generation with Chain-of-Thought (CoT) Reasoning Strategies? Given the success of mathematical
CoT reasoning in LLMs [36, 74] and LMMs [83, 84] (Left), we provide the first investigation to comprehensively explore the potential of applying current
reasoning techniques to autoregressive image generation (Right), including test-time verification and preference alignment.

Abstract

Chain-of-Thought (CoT) reasoning has been extensively ex-
plored in large models to tackle complex understanding
tasks. However, it still remains an open question whether
such strategies can be applied to verifying and reinforc-
ing image generation scenarios. In this paper, we pro-
vide the first comprehensive investigation of the potential of
CoT reasoning to enhance autoregressive image generation.
We focus on three techniques: scaling test-time computa-
tion for verification, aligning model preferences with Di-
rect Preference Optimization (DPO), and integrating these
techniques for complementary effects. Our results demon-
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strate that these approaches can be effectively adapted and
combined to significantly improve image generation perfor-
mance. Furthermore, given the pivotal role of reward mod-
els in our findings, we propose the Potential Assessment
Reward Model (PARM) specialized for autoregressive im-
age generation. PARM adaptively assesses each genera-
tion step through a potential assessment mechanism, merg-
ing the strengths of existing reward models. Using our
investigated reasoning strategies, we enhance a baseline
model, Show-o, to achieve superior results, with a signifi-
cant +24% improvement on the GenEval benchmark, sur-
passing Stable Diffusion 3 by +15%. We hope our study
provides unique insights and paves a new path for integrat-
ing CoT reasoning with autoregressive image generation.
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“The moon rose above the hill and the calm sea.”Text Prompt:

Unsatisfactory Generation Process

Generation Process with Reasoning

“A red apple was on the oval plate.”Text Prompt:

Unsatisfactory Generation Process

Generation Process with Reasoning

“A boat is sailing on a lake.”Text Prompt:

Unsatisfactory Generation Process

Generation Process with Reasoning

Figure 2. Autoregressive Image Generation without (Top) and with (Bottom) Our Reasoning Strategies. We adopt Show-o [75] as the
baseline model that produces unsatisfactory text-to-image generation. After using our investigated reasoning strategies (integrating PARM
with iterative DPO for both reward model guidance and test-time verification), the generation process and results are effectively enhanced.

1. Introduction

Large Language Models (LLMs) [4, 67, 68] and Large Mul-
timodal Models (LMMs) [17, 47, 82] have gained remark-
able achievements across language [10, 45], 2D image [14,
38], video [15, 26], and 3D [23, 25]. Building upon gen-
eral understanding skills, recent efforts have been made to-
ward enhancing LLMs and LMMs with complex Chain-of-
Thought (CoT) reasoning capabilities [30, 72, 74, 86], e.g.,
OpenAI o1 [48], contributing to superior performance in
mathematics [39, 83], science [24, 61], and coding [22, 89].

Despite the success in multimodal understanding, it re-
mains under-explored whether multi-step reasoning strate-
gies can be effectively applied to image generation. Consid-
ering the discrepancy between two tasks, we observe that,
autoregressive image generation [6, 64, 73, 75] shares a
similar output manner to the nature of LLMs and LMMs.
Specifically, they both quantize the target data (language
and image) into discrete tokens, and iteratively predict par-
tial content conditioned on previously generated tokens.

As illustrated in Figure 1, LMMs leverage CoT to break
down complex mathematical problems into manageable
steps, which enables scaling test-time computation with re-
ward models [36, 42, 63, 70] and reinforcement learning
for preference alignment [27, 33, 40, 84]. Likewise, au-
toregressive image generation through step-by-step decod-
ing can produce intermediate images, potentially allowing
for similar verification and reinforcement techniques. This
raises the question: Can we verify and reinforce image gen-
eration step-by-step with strategies revealed by OpenAI o1?

To this end, we conduct a systematic investigation into
the potential of CoT reasoning for autoregressive image
generation. We adopt Show-o [75], a latest discrete gen-
erative model, as our baseline, and evaluate on a challeng-
ing text-to-image generation benchmark: GenEval [20].
Specifically, we focus on examining two key perspectives:

1) Scaling test-time computation with Outcome/Process Re-
ward Model (ORM/PRM) as verifiers; and 2) Reinforced
preference alignment with Direct Preference Optimization
(DPO). The specifics are as follows:

• ORM vs PRM as Test-time Verifiers. As the top-1 result
may not always be reliable, reward models are employed
to score sampled candidates and perform outcome selec-
tion, where ORM is instance-level and PRM is process-
level. In our settings, the score assesses whether each
candidate image is inherently reasonable and aligns with
the given textual prompt. We prompt LLaVA-OneVision
(7B) [34] as a zero-shot reward model, and then curate
text-to-image ranking data for reward fine-tuning. We ap-
ply a best-of-N selection approach in the comparison of
zero-shot and fine-tuned reward models.
Observation: ORM demonstrates significant improve-
ment, while PRM offers minimal benefit.

• Test-time Verifiers vs Preference Alignment. Explor-
ing the trade-off between inference-time and post-training
offers valuable insights into the model’s attainable per-
formance. Preference alignment are adopted to elicit the
implicit reasoning capabilities from their widely learned
knowledge. In this study, we construct ranking preference
data and apply DPO alignment with iterative training [53]
to optimize the generation decoding process, comparing
its effectiveness to test-time verification.
Observation: DPO alignment with iterative training at-
tains stronger results to the fine-tuned ORM verifier.

• Preference Alignment plus Test-time Verifiers. After
investigating the individual impact, we integrate the two
techniques to highlight their complementary potential in
autoregressive image generation. We consider three ap-
proaches: 1) DPO with reward model guidance, i.e., inte-
grating DPO’s policy with reward models’ objectives for
alignment; 2) Verification after DPO alignment, i.e., ap-
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plying reward models for best-of-N selection on DPO-
aligned models; and 3) Verification after DPO with re-
ward model guidance, i.e., a combination of 1 and 2.
Observation: All integration methods lead to greater im-
provements, indicating complementary characteristics.

Through our experiments, we demonstrate the proms-
ing potential of applying CoT reasoning strategies to im-
age generation scenarios, uncovering their adaptation meth-
ods and compatibility. Furthermore, we identify significant
room for improvement in reward models tailored for au-
toregressive image generation. For ORM, the global-level
assessments are unable to capture the nuanced step-wise
information, leading to inaccurate reward judgments. For
PRM, the early-stage images tend to appear blurry, while
later-stage images across different paths often converge to
visually similar outputs, limiting its discrimination ability.

To alleviate these issues, we propose a specialized re-
ward model for autoregressive image generation, termed
Potential Assessment Reward Model (PARM). PARM
adaptively verifies the generation process step by step with
three delicately designed tasks: 1) Judge which step is clear
and convincing enough to be evaluated, given that most
early-stage images are typically blurry; 2) Assess whether
the current step has the potential to yield a high-quality fi-
nal image, since later-stage images generally do not change
too much; and 3) Score the remaining final paths for select-
ing the best one, similar to an ORM. In this way, PARM can
adaptively conduct assessment at appropriate steps (over-
coming PRM’s scoring challenges), while effectively cap-
turing fine-grained step-by-step cues (complementing the
coarse evaluation of ORM). Our experiments showcase
that PARM significantly outperforms both ORM and PRM,
which finally improves the baseline model by +24% on
GenEval, as visualized in Figure 2, surpassing the advanced
Stable Diffusion 3 [13] by +15%.

Our main contributions are summarized as follows:

• We present the first comprehensive empirical study of ap-
plying CoT reasoning strategies to autoregressive image
generation domains, providing unique insights into the fu-
ture advancement of this field.

• We investigate specific adaption methods of techniques,
including test-time verification, preference alignment,
and ranking data curation, to autoregressive image gener-
ation, indicating their performance and complementarity.

• We further introduce PARM, a new reward model tailored
for image generation scenarios, which adaptively per-
forms step-wise potential assessment and path selection,
significantly enhancing text-to-image generation quality.
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Figure 3. Comparison of Reward Models as Test-time Verifiers.
We adopt Show-o [75] as the ‘Baseline’ and evaluate Best-of-N
selection on the GenEval [20] benchmark.

2. Our Investigation

Chain-of-Thought (CoT) reasoning has been widely ex-
ploited to solve complex problems for language and mul-
timodal understanding. In this study, we conduct a system-
atic investigation aiming to find out, whether we can verify
and reinforce image generation step-by-step.

2.1. Overview

Task Formulation. To enable the applicability of cur-
rent reasoning techniques, we focus on autoregressive im-
age generation tasks, demonstrated by models such as
MaskGiT [6] and LlamaGen [64]. This task employs a
data representation and output paradigm akin to those used
in LLMs and LMMs, while achieving comparable perfor-
mance to continuous diffusion models [54, 57, 59]. Specifi-
cally, it leverages quantized autoencoders [12] to transform
images into discrete tokens, allowing for the classification
loss of Direct Preference Optimization (DPO) [55] in post-
training. Additionally, it iteratively predicts one or more
tokens at each step, conditioned on prior outputs, thereby
creating reasoning paths suitable for step-wise verification.

Experimental Settings. We select Show-o [75] as our
baseline model for investigation, a latest autoregressive im-
age generation model with advanced capabilities. To com-
prehensively evaluate different strategies, we assess the
text-to-image generation performance on a rigorous bench-
mark: GenEval [20]. This scenario challenges the model
to produce images with not only high visual quality and
image-text alignment, but also accurate object attribute and
co-occurrence. In the subsequent sections, we explore
three strategies to improve the step-by-step decoding of im-
age generation: test-time verification (Sec. 2.2), preference
alignment (Sec. 2.3), and their combination (Sec. 2.4).
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Figure 4. Investigation of Reward Models in Autoregressive Image Generation. For test-time verification, we implement Outcome
Reward Model (ORM) and Process Reward Model (PRM), and introduce a new Potential Assessment Reward Model customized for
image generation scenarios, which progressively performs three tasks (highlighted in blue) to enhance the reasoning of generation process.

2.2. ORM vs PRM as Test-time Verifiers

Scaling test-time computation [36, 42, 63, 70] to enhance
reasoning capabilities has emerged as an effective alterna-
tive to scaling training costs. Current approaches often em-
ploy reward models as test-time verifiers within CoT rea-
soning paths, typically using two main categories: Outcome
Reward Model (ORM) and Process Reward Model (PRM).
Drawing inspiration from these methods, we respectively
implement and evaluate them within the context of autore-
gressive image generation, as illustrated in Figure 4.

ORM. Based on multiple complete reasoning outputs,
ORM assigns each candidate a reword score and select the
most confident one using a best-of-N strategy. In our study,
we adopt ORM solely to evaluate the generated image at the
final step, rather than the entire CoT process in mathemati-
cal reasoning tasks. Specifically, we begin with a zero-shot
ORM, followed by curating a text-to-image ranking dataset
to fine-tune the ORM for enhancement, as outlined below:

• Zero-shot ORM: We leverage a pre-trained LLaVA-
OneVision (7B) [34], an LMM with superior generaliza-

tion, as our zero-shot ORM. We input the text prompt
along with the generated image into LLaVA-OneVision,
and devise a prompt template (detailed in the Supplemen-
tary Material) to activate its visual understanding capa-
bilities. This model assesses the quality of candidate im-
ages, providing binary responses, ‘yes’ (good quality) or
‘no’ (low quality). The candidate image with the highest
probability of ‘yes’ is then selected as the final output.

• ORM Ranking Data Curation: To enhance the accuracy
of outcome rewards, we curate a dataset of 288K text-
to-image ranking examples for fine-tuning ORM. First,
we prompt GPT-4 [46] to generate a list of 200 count-
able daily object names with specific colors. Using these
objects, we apply the six object-centered prompt tem-
plates from GenEval, constructing a diverse set of 13K
text prompts. We perform a strict filtering to ensure that
these prompts do not overlap with the GenEval test sam-
ples. Then, using our baseline model, Show-o, we synthe-
size around 50 images per prompt at a high temperature.
After that, we label each image with a binary annotation
of ‘yes’ or ‘no’ using the evaluation metric in GenEval.
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Table 1. Test-time Verifiers (ORM vs PRM) vs Preference Alignment. We evaluate text-to-image generation on the GenEval [20]
benchmark and adopt Show-o [75] as the autoregressive baseline model. ‘ORM/PRM’ and ‘DPO’ denote Outcome/Process Reward Model
and Direct Preference Optimization [55], respectively. We adopt the best-of-N selection for test-time verifiers, setting N = 20, and
highlight the better-performed variant of each reasoning strategy in green.

Reasoning
Strategy Method Setting

Single
object

Two
object

Counting Colors Position
Attribute
binding Overall

Baseline - - 0.95 0.52 0.49 0.82 0.11 0.28 0.53

Test-time
Verifier

ORM
Zero-Shot 0.99 0.63 0.63 0.84 0.19 0.39 0.61
Fine-tuned 0.99 0.72 0.65 0.84 0.25 0.33 0.63

PRM
Zero-Shot 0.98 0.51 0.54 0.82 0.11 0.23 0.53
Fine-tuned 0.98 0.55 0.54 0.83 0.13 0.29 0.55

Preference
DPO

- 0.96 0.70 0.50 0.82 0.30 0.43 0.62
Alignment Iterative 0.98 0.72 0.53 0.84 0.40 0.46 0.65

• Fine-tuned ORM: Using the curated ranking dataset, we
fine-tune LLaVA-OneVision to enhance its capability for
assessing image quality and cross-modal alignment. The
training data format is consistent with the prompt tem-
plate used in the zero-shot ORM, incorporated with our
constructed 288K text prompts and associated images.
The model is fine-tuned for one epoch, using a batch size
of 8 and a learning rate of 1e−5. This fine-tuning pro-
cess enables the ORM to capture more intricate aspects of
object composition and nuanced visual-text relationships,
resulting in more reliable reward scoring.

PRM. Different from ORM that evaluates only the final
output, we utilize PRM to provide a reward score to each
candidate with different steps throughout the generation
process. Similar to our previous investigation, we start from
a zero-shot PRM, LLaVA-OneVision, and then curate 10K
step-wise text-to-image ranking data to obtain a fine-tuned
PRM. We refer to the Supplementary Material for detailed
implementation of PRM.

Experiments and Insights. As showcased in the middle
of Table 1, we compare the test-time verification results be-
tween ORM and PRM with a best-of-20 strategy. The ob-
servations are summarized below:

• Test-time verification can significantly boost generation
performance. Compared to the baseline scores of 53%
on GenEval, the fine-tuned ORM as a test-time verifier
achieves the highest gains of +10%. This finding sug-
gests that current autoregressive image generation mod-
els, similar to LLMs and LMMs, face challenges with in-
consistent and unstable decoding paths. Consequently, a
test-time verification strategy is essential to identify and
follow the most reliable reasoning path.

• ORM exhibits stronger enhancement capabilities than
PRM. In contrast to ORM providing a clear benefit,
PRM yields only marginal improvements, e.g., +2% on
GenEval after fine-tuning. This discrepancy arises from
the unique characteristics of the autoregressive image
generation task in two key ways: 1) Images at early steps
are too blurry for PRM to effectively interpret their vi-
sual features and image-text alignment. 2) Images at later
steps tend to exhibit minimal differences, making it chal-
lenging for PRM to discriminate. Whereas, ORM eval-
uates images at the final step, which provides sufficient
visual and semantic information for accurate judgment.

• Fine-tuning by ranking data enhances verification re-
sults and demonstrates improved scaling performance.
As illustrated in Figure 3, both fine-tuned ORM and PRM
outperform their zero-shot counterparts, achieving higher
scores with larger N values in the best-of-N selection.
Additionally, as N increases, fine-tuned reward models
show greater improvements, indicated by steeper curves,
reflecting a better scaling response to test-time compu-
tation. This highlights the effectiveness of our curated
ranking dataset in refining reward accuracy and benefit-
ing scalability across a broader range of candidates.

2.3. Test-time Verifiers vs Preference Alignment

Post-training has been widely utilized in existing LLMs
and LMMs to align model outputs with human prefer-
ences. Common techniques include reinforcement learn-
ing with reward models, e.g., Proximal Policy Optimiza-
tion (PPO) [62], and its streamlined counterpart with clas-
sification objectives, e.g., Direct Preference Optimization
(DPO) [55]. Given that most autoregressive image gen-
eration models inherently function within a classification
framework, we leverage the simplicity of DPO alignment
to enhance the quality of generated images.
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Table 2. Test-time Verifiers plus Preference Alignment. We evaluate text-to-image generation on the GenEval [20] benchmark and adopt
Show-o [75] as the autoregressive baseline model. ‘Ft. ORM’ and ‘It. DPO’ denote the fine-tuned ORM and iterative DPO [55]. We
explore three combination approaches (‘1st, 2nd, and 3rd Integration’) of reward models and preference alignment, comparing ‘individual’
results. We adopt the best-of-N selection for test-time verifiers, setting N = 20, and highlight the best-performing integration in green.

Reasoning
Strategy

Test-time
Verifier

Preference
Alignment

Reward
Guidance

Single
object

Two
object

Counting Colors Position
Attribute
binding Overall

Baseline - - - 0.95 0.52 0.49 0.82 0.11 0.28 0.53

Individual
Ft. ORM - - 0.99 0.72 0.65 0.84 0.25 0.33 0.63

- It. DPO - 0.98 0.72 0.53 0.84 0.40 0.46 0.65

1st Integration - It. DPO Ft. ORM 0.98 0.78 0.44 0.81 0.50 0.48 0.67
2nd Integration Ft. ORM It. DPO - 0.98 0.80 0.62 0.83 0.59 0.54 0.72
3rd Integration Ft. ORM It. DPO Ft. ORM 0.98 0.84 0.64 0.85 0.66 0.52 0.75

DPO Ranking Data Curation. To bypass reinforcement
learning, DPO leverages an implicit rewarding mechanism
by training on a ranking dataset of paired preferred and dis-
preferred responses, corresponding to well-generated and
poor-quality images in our case. Fortunately, we have al-
ready constructed a substantial amount of ranking data for
training ORM, annotated with ‘yes’ and ‘no’ labels to indi-
cate the generation quality. Building on this, we utilize the
13K unique text prompts from the ORM training dataset
and, for each prompt, randomly pair two generated images,
one labeled ‘yes’ and the other ‘no’, yielding a total of 10K
paired data for DPO alignment.

DPO for Autoregressive Image Generation. Since au-
toregressive image generation models are also trained using
a cross-entropy loss, we can directly apply the maximum
likelihood objective in DPO to our setting. In detail, the pa-
rameterized policy is initialized from Show-o and optimized
during training, while the reference policy is also initialized
from Show-o but kept frozen. The objective encourages the
model to assign a higher likelihood to preferred images over
dispreferred images, aligning with the curated preference
structure. The DPO training is conducted over one epoch
with a batch size of 10 and a learning rate of 1e−5.

DPO with Iterative Training. Following the initial stage
of DPO alignment, the model has learned to generate im-
ages that better align with the preferred responses. Inspired
by iterative DPO [52], we further refine this alignment by
applying the newly aligned model to generate updated rank-
ing data based on the text prompts in D. We annotate these
new images with ‘yes’ or ‘no’ labels using the same method
in Sec. 2.2. For each prompt, we collect paired images la-
beled yyes and yno, and exclude samples where all images
receive the same label, resulting in a refined DPO ranking
dataset of 7K samples. By conducting another round of

DPO, the model can be further improved by learning from
more informative preference relations. We iterate the DPO
training process once with the same training configurations.

Experiments and Insights. In the bottom of Table 1, we
present the evaluation results of DPO alignment and com-
pare it with the performance with test-time verification. The
observations are summarized below:

• DPO alignment can effectively reinforce the generation
performance. On GenEval, initial DPO alignment im-
proves the baseline model’s performance by +9%. With
iterative training, these gains are further extended as
+11%, highlighting the effectiveness of a refined prefer-
ence dataset in strengthening model alignment with de-
sired outputs. This demonstrates that DPO alignment can
serve as a powerful method for enhancing autoregressive
image generation models, especially in scenarios where
explicit preference data is available to guide training.

• Initial DPO matches test-time verification, while iter-
ative DPO surpasses. After the initial alignment, the
model achieves performance comparable to that of the
fine-tuned ORM, the top-performing variant for verifica-
tion. However, with iterative alignment on refined rank-
ing data, the model outperforms all test-time verifiers, i.e.,
+2% over the fine-tuned ORM. This demonstrates the po-
tential of iterative DPO to progressively reinforce image
generation capabilities through updated ranking data.

2.4. DPO Alignment plus Test-time Verifiers

The investigations above have demonstrated the individual
effectiveness of test-time verification and DPO alignment.
Next, we explore three approaches to integrate these two
techniques to assess their potential for complementary en-
hancement in image generation, leveraging both the adapt-
ability of verifiers and the reinforcement of DPO.
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Table 3. Performance Comparison on the GenEval [20] Benchmark. Compared to existing diffusion and autoregressive models, we
investigate the potential of Chain-of-Thought (CoT) reasoning strategies in text-to-image generation. ‘Ft. ORM’ and ‘It. DPO’ denote the
fine-tuned ORM and iterative DPO [55]. PARM refers to our Potential Assessment Reward Model specialized for autoregressive image
generation. We adopt the best-of-20 selection for test-time verifiers, and highlight the best and second-best overall scores in green and red.

Model
Test-time
Verifier

Preference
Alignment

Reward
Guidance

Single
object

Two
object

Counting Colors Position
Attribute
binding Overall

PixArt-α [7] - - - 0.98 0.50 0.44 0.80 0.08 0.07 0.48
SD v2.1 [60] - - - 0.98 0.51 0.44 0.85 0.07 0.17 0.50
DALL-E 2 [57] - - - 0.94 0.66 0.49 0.77 0.10 0.19 0.52
SDXL [54] - - - 0.98 0.74 0.39 0.85 0.15 0.23 0.55
SD 3 (d=24) [13] - - - 0.98 0.74 0.63 0.67 0.34 0.36 0.62

LlamaGen [64] - - - 0.71 0.34 0.21 0.58 0.07 0.04 0.32
Chameleon [66] - - - - - - - - - 0.39
LWM [37] - - - 0.93 0.41 0.46 0.79 0.09 0.15 0.47
SEED-X [18] - - - 0.97 0.58 0.26 0.80 0.19 0.14 0.49

Show-o [75]

- - - 0.95 0.52 0.49 0.82 0.11 0.28 0.53

Ft. ORM - - 0.99 0.72 0.65 0.84 0.25 0.33 0.63
- It. DPO - 0.98 0.72 0.53 0.84 0.40 0.46 0.65

Ft. ORM It. DPO Ft. ORM 0.98 0.84 0.64 0.85 0.66 0.52 0.75

PARM - - 0.99 0.77 0.68 0.86 0.29 0.45 0.67
- It. DPO PARM 0.97 0.75 0.60 0.83 0.54 0.53 0.69

PARM It. DPO - 0.98 0.83 0.64 0.84 0.59 0.62 0.74
PARM It. DPO PARM 0.99 0.86 0.67 0.84 0.66 0.64 0.77

DPO with Reward Model Guidance. As discussed
in previous works [77], DPO can struggle with out-of-
distribution responses due to distribution shifts from the
ranking dataset. A potential solution [1, 79] is to incorpo-
rate prompt-only datasets during post-training and leverage
a reward model to provide online preference guidance. Fol-
lowing this approach, we adopt our fine-tuned ORM as the
explicit reward model to offer more generalized preference
feedback, and add the online objectives with the original
DPO loss We maintain the same training data and configu-
rations as in the initial DPO alignment stage.

Verification after DPO Alignment. We observe that ver-
ification and DPO techniques may naturally complement
each other in two key ways: 1) They operate independently
at different stages of implementation, i.e., post-training and
test-time; and 2) DPO refines the internal knowledge distri-
bution within the model to enhance reasoning, while ver-
ification focuses on selecting the optimal reasoning path
within this refined distribution. Therefore, we apply the
fine-tuned ORM for best-of-N selection directly on the
model after DPO alignment.

Verification after DPO with Reward Model Guidance.
In this approach, we combine the strengths of both DPO
with reward model guidance and test-time verification. Our

goal is to achieve optimal alignment, enhancing the model’s
generalization capabilities during training, while also ensur-
ing reliable image generation paths at inference time.

Experiments and Insights. Table 2 reports the text-to-
image generation scores with different integration methods.
The observations are summarized below:

• Verification and alignment perform expected comple-
mentary characteristics. Across all three approaches,
verification and alignment complement each other effec-
tively. For instance, the third integration method outper-
forms DPO alignment alone by +10%, and surpasses the
verification alone by +12%. These results highlight the
potential of combining verification and alignment tech-
niques in future autoregressive image generation tasks,
enabling the production of high-quality outputs that are
both preference-aligned and test-time reliable.

• Applying verifiers to both training and test time yields
maximum enhancement. We observe the third combi-
nation approach delivers the most significant gains, out-
performing the first approach by +8%, and the second
by +3%. This suggests that, even with a model already
aligned to preferences, the fine-tuned ORM can play com-
plementary roles in the test-time decoding. These dual
functions reinforce each other, highlighting the versatility
of reward models in autoregressive image generation.
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3. Potential Assessment Reward Model

From our comprehensive investigation, reward models
prove valuable by enabling both decoding path selection
and preference reward guidance. However, we still observe
considerable room for enhancing reward models.

Limitation of ORM and PRM. 1) ORM showcases
strong performance by selecting optimal final outputs, yet
it lacks the capacity to provide fine-grained, step-wise eval-
uation at each generation step. 2) While PRM has demon-
strated effectiveness in understanding tasks such as mathe-
matics, it is less suitable for autoregressive image genera-
tion. As analyzed in Sec. 2.2, PRM struggles with early-
stage images that are too blurry for reliable evaluation,
given that only a few regions are decoded. In later stages,
images derived from similar previous steps lack sufficient
distinction, challenging for PRM to discriminate.

PARM. Motivated by these observations, we propose the
Potential Assessment Reward Model (PARM), a specialized
reward model tailored for autoregressive image generation,
as illustrated in Figure 4. PARM combines the best of both
worlds: 1) it operates adaptively in a step-wise manner, us-
ing a potential assessment mechanism to overcome PRM’s
evaluation challenges; and 2) it performs a best-of-N ′ se-
lection across N ′ (N ′ ≤ N ) high-potential reasoning paths,
thus inheriting ORM’s advantage. Specifically, the method-
ology of PARM contains three progressive tasks:

1. Clarity Judgment. In the best-of-N setting, we first
sample N different reasoning paths for image genera-
tion. Then, at each intermediate step, PARM evaluates
whether the partially generated image contains enough
visual clarity to be meaningfully assessed, assigning a
binary label If labeled ‘no’, the model skips to the next
step. If labeled ‘yes’, the model proceeds to the next
task for potential assessment. This pre-judgment pre-
vents scoring on early, blurry images that lack informa-
tive content (as seen in PRM), ensuring only sufficiently
clear steps are considered for rewarding.

2. Potential Assessment. For each clear step that passes
the clarity judgment, PARM assesses the potential of the
current step to determine whether it can lead to a high-
quality final image, again using a binary label. If labeled
‘no’, the generation path is truncated immediately. If la-
beled ‘yes’, the path is preserved to produce the final im-
age. This approach is based on the observation that, once
an image at a given step is clear enough to evaluate, its
overall layout and structure are unlikely to change sig-
nificantly in subsequent steps, making it a reliable can-
didate for potential assessment. This task helps iden-
tify promising intermediate steps accurately, effectively
pruning low-potential candidates during inference.

3. Best-of-N ′ Selection. After completing the above two
tasks, suppose there are N ′ high-potential paths remain-
ing to produce the final images (N ′ ≤ N ). PARM
then performs a best-of-N ′ selection to identify the most
promising image candidates as the output. If N ′ = 0,
the model defaults to selecting the reasoning path with
the lowest probability of a ‘no’ label as the output. This
final task leverages ORM’s global selection capabilities
to ensure a high-quality generated image.

PARM Ranking Data Curation. To empower PARM
with robust capabilities, we curate a new ranking dataset
with 400K instances by re-annotating the 13K text prompts
from ORM ranking data. The dataset is structured into three
subsets corresponding to the three evaluation tasks, contain-
ing 120K, 80K, and 200K instances, respectively. Please re-
fer to the Supplementary Material for detailed data formats.

Experiments and Insights. With the new reward model,
we revisit our previous investigation by applying PARM to
different approaches enhancing autoregressive image gen-
eration. The observations are summarized below:

• PARM demonstrates the best-performing reward model
across different strategies. Table 3 and Figure 3 present
the effectiveness of PARM as test-time verifiers, signif-
icantly outperforming other reward models, e.g., +6%
to the fine-tuned ORM. Additionally, PARM scales ef-
fectively with increasing N , highlighting its potential
for further improvement with larger test-time computa-
tion. PARM also outperforms iterative DPO, the en-
hanced preference alignment strategy with refined data.
Furthermore, PARM better harnesses the complementary
strengths with post-training, consistently attaining higher
integration scores than the fine-tuned ORM. These results
underscore PARM’s capability as a versatile and robust
reward model for autoregressive image generation.

• With PARM, our baseline model (Show-o) is enhanced
to achieve leading generation performance. Compared
to other image generation models in Table 3, our best-
performing configuration, i.e., integrating PARM with it-
erative DPO in both post-training and test-time, achieves
a score of 77%, improving the baseline by +24% and sur-
passing the advanced Stable Diffusion 3 [13] by +15%. In
particular, substantial gains are observed in ‘Two Obj.’,
‘Colors’, ‘Position’, and ‘Attribute binding’ emphasiz-
ing the robustness in handling challenging compositional
generation. In Figures 5, 6, 7, 8, and 9, we showcase ex-
tensive qualitative examples. We observe that the baseline
model often generates inaccurate spatial relationships and
strange appearances, or fail to precisely reflect object at-
tributes. In contrast, our approach consistently mitigates
such issues, ensuring that the spatial relations, object fea-
tures, and overall fidelity to the text prompt are preserved.
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“A couple is relaxing in a hammock under the shade of a tree.”

“A person is looking at a waterfall and feeling awestruck.”

Text Prompt:

Baseline Model:

With Reasoning:

Text Prompt:

Baseline Model:

With Reasoning:

“A leather jacket and a glass vase.”Text Prompt:

Baseline Model:

With Reasoning:

Figure 5. Qualitative Results using Our Reasoning Strategies. Show-o [75] is adopted as the baseline model, and compared to our
best-performing reasoning strategy: integrating PARM with iterative DPO for both reward model guidance and test-time verification.
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“The black chair is on top of the blue rug.”Text Prompt:

Baseline Model:

With Reasoning:

“The black sofa was on the left of the white coffee table.”Text Prompt:

Baseline Model:

With Reasoning:

“The fluffy towel and metallic hook hang on the wooden hook.”Text Prompt:

Baseline Model:

With Reasoning:

Figure 6. Qualitative Results using Our Reasoning Strategies. Show-o [75] is adopted as the baseline model, and compared to our
best-performing reasoning strategy: integrating PARM with iterative DPO for both reward model guidance and test-time verification.
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“The fluffy white cat snuggled up next to the warm brown blanket.”Text Prompt:

Baseline Model:

With Reasoning:

“The metallic pen and notebook jot down ideas on the wooden desk.”Text Prompt:

Baseline Model:

With Reasoning:

“The leather chair and metallic lamp provide comfort and light for the wooden desk on the rug.”Text Prompt:

Baseline Model:

With Reasoning:

Figure 7. Qualitative Results using Our Reasoning Strategies. Show-o [75] is adopted as the baseline model, and compared to our
best-performing reasoning strategy: integrating PARM with iterative DPO for both reward model guidance and test-time verification.
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“The white shirt was on the black hanger.”

“The bright blue bird perched on the rough brown branch.”

“The smooth metal surface reflected the bright sky and the dark clouds.”

Text Prompt:

Baseline Model:

With Reasoning:

Text Prompt:

Baseline Model:

With Reasoning:

Text Prompt:

Baseline Model:

With Reasoning:

Figure 8. Qualitative Results using Our Reasoning Strategies. Show-o [75] is adopted as the baseline model, and compared to our
best-performing reasoning strategy: integrating PARM with iterative DPO for both reward model guidance and test-time verification.

12



“The leather wallet and keychain hang on the metallic hook by the wooden door.”Text Prompt:

Baseline Model:

With Reasoning:

“The sleek bike zoomed down the smooth road and the bumpy trail.”

“The red apple was next to the yellow pear.”

Text Prompt:

Baseline Model:

With Reasoning:

Text Prompt:

Baseline Model:

With Reasoning:

Figure 9. Qualitative Results using Our Reasoning Strategies. Show-o [75] is adopted as the baseline model, and compared to our
best-performing reasoning strategy: integrating PARM with iterative DPO for both reward model guidance and test-time verification.
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4. Related Work

Scaling Test-time Computation. Humans often dedicate
significant time and effort to solve complex problems. In-
spired by this, many efforts have focused on scaling test-
time computation for Large Language Models (LLMs)
to tackle reasoning tasks such as mathematical problem-
solving [64, 70, 76, 80], code synthesis [11, 44, 89], and
workflow generation [16, 78, 81]. One line of research
adapts the input space to leverage Chain-of-Thought (CoT)
capabilities, using approaches like in-context CoT exam-
ples [74] or zero-shot CoT prompts [31]. Another branch
modifies or integrates reasoning paths within the output
space, utilizing strategies such as self-consistency [71],
CoT decoding [71], and verifier-based selection [9, 36, 63].
Among these, test-time verifiers have demonstrated gener-
ality and robustness in enhancing reasoning performance.
For example, early work [9] trains an Outcome Reward
Model (ORM) to evaluate final outputs and select the best-
of-N candidates for optimal results. Later, Lightman et
al. [36, 42] adopt the Process Reward Model (PRM) to eval-
uate intermediate reasoning steps, achieving greater effec-
tiveness. Snell et al. [63] further highlights that scaling
test-time computation is often more impactful than scal-
ing model parameters during training. Recently, OpenAI
o1 [50] has demonstrated exceptional reasoning capabilities
across a variety of complex and challenging scenarios, un-
derscoring the potential of this approach. Building on these
advancements in understanding tasks, we conduct a com-
prehensive investigation into whether verifier-based strate-
gies can also enhance image generation tasks, and propose a
new Potential Assessment Reward Model (PARM), specifi-
cally designed for this domain.

Reinforced Preference Alignment. After robust pre-
training and fine-tuning, LLMs often acquire substantial
knowledge. However, a post-training alignment stage is
typically required to align their output preferences to meet
specific targets, such as human feedback [2, 8, 32] or Chain-
of-Thought (CoT) reasoning [33, 40, 70]. Traditional ap-
proaches [5, 28, 51, 87] often leverage reinforcement learn-
ing (RL) to address this challenge. These methods usu-
ally involve two steps: first, optimizing a neural-network-
based reward function within a preference model (e.g., the
Bradley-Terry model [3]), and then fine-tuning the tar-
get LLM to maximize this reward using techniques like
proximal policy optimization (PPO) [62]. However, RL-
based methods often encounter issues related to complexity
and instability. To overcome these challenges, Rafailov et
al. introduced Direct Preference Optimization (DPO) [55],
which parameterizes the reward model to enable the deriva-
tion of the optimal policy through a closed-form solu-
tion. This approach has been effectively applied to en-

hance CoT capabilities in mathematical reasoning [41, 70]
and code generation [19, 43, 77]. Further advancements
have extended DPO with step-wise preference data [33, 40]
for more granular supervision and multi-modality learn-
ing [84, 85] to support visual reasoning. In this study,
we apply DPO-based preference alignment to autoregres-
sive image generation, demonstrating its effectiveness in
improving image quality during step-by-step decoding.

Autoregressive Image Generation. The transformer ar-
chitectures with autoregressive output schemes [1, 34, 46,
47, 49, 68] have demonstrated a remarkably successful
modeling approach in language and multi-modality. Mo-
tivated by such progress, a series of work, e.g., DALL-
E [56], LlamaGen [65], and Chameleon [66], utilizes such
autoregressive modeling with casual attention to learn the
dependency within image pixels for image generation tasks,
rather than popular diffusion models [7, 13, 29, 54, 57, 88].
However, such raster-order autoregression suffers from se-
vere time consumption and performance constraints when
synthesizing high-resolution and high-fidelity images, at-
tributed to the growing number of discrete tokens com-
pressed by VQ-VQE [12, 21, 58, 69]. To address the chal-
lenges, MaskGiT [6] proposes to learn a bidirectional au-
toregressive transformer with a parallel iterative decoding
strategy, benefiting both the generation performance and ef-
ficiency. Recently, this approach has been effectively ex-
tended, primarily focusing on two aspects: the unification
of visual understanding and generation (Show-o [75]) and
its integration with diffusion techniques (MAR [35]). Con-
sidering that such generation paradigm is quite similar to
that of LLMs, representing data with discrete tokens and
predicting iteratively conditioned on previous tokens, we
explore the potential of applying CoT reasoning techniques
within LLMs to autogressive image generation. Through
our thorough investigation, we demonstrate its promising
effectiveness for enhanced image generation capabilities.

5. Conclusion

In this work, we investigate the adaption and potential of
CoT reasoning strategies in autoregressive image genera-
tion. Through a systematic investigation, we demonstrate
that different reasoning strategies can effectively improve
image generation, e.g., test-time verification, preference
alignment, and their integration. Given our observation, we
further introduce a tailored reward model for autoregres-
sive image generation, termed Potential Assessment Re-
ward Model (PARM), which evaluates the step-wise poten-
tial of image generation for adaptive reward scoring with
superior results. Our experiments underscore the promise
of CoT reasoning in autoregressive image generation, ad-
vancing this field in new directions.
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A. Data and Implementation Details

A.1. ORM

Zero-shot ORM. To implement a zero-shot ORM in im-
age generation, we adopt a pre-trained LLaVA-OneVision
(7B) [34] for test-time verification. We adopt a simple
prompt to elicit its capability for text-to-image evaluation,
which we observe performs well in most cases, as below:

Prompt: “<image> This image is generated by a
prompt: <prompt>. Does this image accurately rep-
resent the prompt? Please answer yes or no without
explanation.”

The ‘<image>’ and ‘<prompt>’ denote and generated im-
age from Show-o [75] and the input textual prompt.

ORM Ranking Data Curation. To obtain the fine-tuned
ORM from LLaVA-OneVision, we curate 288K text-to-
image ranking examples as specified in the main paper. We
adopt the same prompt in the instruction as the zero-shot
ORM, and label ‘yes’ or ‘no’ in the response to denote the
positive or negative instance, as showcased below:

Instruction: “<image> This image is generated by
a prompt: <prompt>. Does this image accurately
represent the prompt? Please answer yes or no
without explanation.”

Response: “Yes” or “No”

A.2. PRM

Zero-shot PRM. We also utilize the pre-trained LLaVA-
OneVision (7B) as our zero-shot PRM, applying similar
prompt template used in ORM as:

Prompt: “<image> This is an intermediate image
in the generation process by a prompt: <prompt>.
Does this intermediate image accurately represent the
prompt? Please answer yes or no without explana-
tion.”

At each intermediate step in the generation process, the
zero-shot PRM assesses each candidate image with a binary
response, ‘yes’ or ‘no’. We then adopt a step-level best-
of-N strategy, selecting the most confident candidate and
following this path for subsequent decoding. By iteratively
employing the PRM at each step, the generation process is
guided step by step towards the final output.

PRM Ranking Data Curation. We observe that the im-
ages generated at intermediate steps tend to appear very
blurry, as only partial visual tokens in specific regions are
decoded while others remain unresolved. Since LLaVA-
OneVision is pre-trained only on natural images (similar to
those generated at the final step), the zero-shot PRM has
limited capability for precise step-wise evaluation. To ad-
dress this issue, we curate a 300K step-wise text-to-image
ranking dataset to fine-tune an improved PRM. We adopt
the same prompt in the instruction as the zero-shot PRM,
formulated as:

Instruction: “<image> This is an intermediate image
in the generation process by a prompt: <prompt>.
Does this intermediate image accurately represent the
prompt? Please answer yes or no without explana-
tion.”

Response: “Yes” or “No”

First, we utilize the 13K unique text prompts from our ORM
ranking dataset, generating 18 intermediate-step images per
prompt using Show-o. Inspired by Math-Shepherd [70], we
employ an automated annotation approach to obtain accu-
rate step-wise labels, eliminating the need for costly human
labor or GPT assistance. For instance, to label the image
at step i (1 ≤ i ≤ 18), we condition Show-o on that im-
age and then produce four different paths for the remaining
18 - i steps. By evaluating the final images from each of
these paths, if any path receives a ‘yes’ score, it indicates
that step i has a high potential to lead to a correct final out-
put, and thus it is labeled as ‘yes’; otherwise, it is labeled
as ‘no’. This automated approach allows us to efficiently
obtain step-wise annotations for assessing the generation.

Fine-tuned PRM. With the step-wise ranking data, the
LLaVA-OneVision is fine-tuned to boost the visual compre-
hension of intermediate-step images. The data format and
training configurations are the same as those used for fine-
tuning the ORM. After training, the PRM becomes more
capable of interpreting blurry images within the decoding
process for more accurate step-by-step selection.

A.3. PARM

In Figure 10, we illustrate why PRM is less suitable for au-
toregressive image generation. As shown, the early-stage
images are too blurry for reliable evaluation, given that only
a few regions are decoded, while the later-stage images de-
rived from similar previous steps lack sufficient distinction,
challenging for discrimination. To integrate the advantage
of both ORM and PRM, we propose Potential Assessment
Reward Model (PARM) and curate a new ranking dataset
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“A refrigerator.”

“A microwave oven.”

“A book with a beautiful cover.”

“A cup.”

“A carrot in front of the TV.”

The early-stage images are too blurry The later-stage images are too similar

Text Prompt:

Text Prompt:

Text Prompt:

Text Prompt:

Text Prompt:

Figure 10. Visualization of Early-stage and Later-stage Images. We visualize the generated images in the intermediate steps of Show-
o [75], where the early-stage images are too blurry to interpret, while the later-stage images are too similar to discriminate, posing great
challenges for PRMs to effectively evaluate.

with 400K instances by re-annotating the 13K text prompts
from ORM ranking data. The dataset is structured into three
subsets corresponding to the three evaluation tasks:

Clarity Judgment Data (120K). Through comprehen-
sive analysis, we observe that the baseline model (Show-o)
typically produces its first clear image between steps 8 and
12 within the 18-step generation, qualifying it for potential
assessment. Based on this, we simplify the annotation by
labeling steps after 11 as ‘yes’ and those before 10 as ‘no’.
Although this approach is static, the trained PARM acquires

generalization skills to adaptively identify the first ‘yes’ la-
bel within steps 8∼12 during inference. The data format is
shown below:

Instruction: “<image> This image is a certain step
in the text-to-image generation process with a prompt:
<prompt>. It is not the final generated one, and will
keep iterating better. Do you think this image can be
used to judge whether it has the potential to iterate
to the image satisfied the prompt? (The image, which
needn’t to be confused but can be clear and basically
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Figure 11. Comparison of Reward Models as Test-time Ver-
ifiers with DPO Alignment. We adopt Show-o [75] with DPO
alignment as the ‘Baseline with DPO’ and evaluate Best-of-N se-
lection on the GenEval [20] benchmark.

judged the object, can be used to judge the potential)
Answer yes or no without explanation.”

Response: “Yes” or “No”

Potential Assessment Data (80K). We assign intermedi-
ate images from steps after 11 with a ‘yes’ or ‘no’ label,
which is based on the final output label of that path in the
ORM data annotation. In practice, if the previous clarity
judgment task yields ‘yes’, the data of this task is organized
as a follow-up question-answering within a multi-turn con-
versation. The data sample of this task is formulated as:

Instruction: “<image> Do you think whether the
image has the potential to iterate to the image sat-
isfied the prompt? Please answer yes or no without
explanation.”

Response: “Yes” or “No”

Best-of-N ′ Selection Data (200K). We directly utilize
the labels in the ORM ranking dataset, with the format as

Instruction: “<image> This image is generated by
a prompt: <prompt>. Does this image accurately
represent the prompt? Please answer yes or no
without explanation.”

Response: “Yes” or “No”
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Figure 12. Comparison of Reward Models as Test-time Veri-
fiers with Iterative DPO Alignment. We adopt Show-o [75] with
iterative DPO alignment as the ‘Baseline with It. DPO’ and eval-
uate Best-of-N selection on the GenEval [20] benchmark.

B. Additional Results

Quantitative Results. In Table 4, we present a compre-
hensive performance comparison on GenEval [20] between
previous diffusion and autoregressive models, and Shwo-o
equipped with our investigated reasoning strategies. Sub-
stantial improvement for text-to-image generation are ob-
served using different reasoning techniques. With PARM,
the gains in complex attributes, such as ‘Two Obj.’, ‘Count-
ing’, ‘Position’, and ‘Attribute binding’ emphasize the ro-
bustness of our approach in handling challenging aspects
of compositional generation, setting a new standard in text-
to-image performance. In Figures 11 and 12, we present
the performance of test-time verification integrated with
DPO [55] and iterative DPO, respectively, instead of the
test-time verification only in Figure 2 of the main paper. As
shown, our propose PARM both achieves the best results as
the N increases for best-of-N selection.
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Table 4. Performance Comparison on the GenEval [20] Benchmark. Compared to existing diffusion and autoregressive models, we
investigate the potential of Chain-of-Thought (CoT) reasoning strategies in text-to-image generation. ‘Zs.’, ‘Ft.’, and ‘It. DPO’ denote the
zero-shot, fine-tuned verifiers, and iterative DPO [55], repsectively. PARM refers to our proposed Potential Assessment Reward Model
specialized for autoregressive image generation. We adopt the best-of-20 selection for test-time verifiers by default, and highlight the best
and second-best overall scores in green and red.

Model
Test-time
Verifier

Preference
Alignment

Reward
Guidance

Single
object

Two
object

Counting Colors Position
Attribute
binding Overall

PixArt-α [7] - - - 0.98 0.50 0.44 0.80 0.08 0.07 0.48
SD v2.1 [60] - - - 0.98 0.51 0.44 0.85 0.07 0.17 0.50
DALL-E 2 [57] - - - 0.94 0.66 0.49 0.77 0.10 0.19 0.52
SDXL [54] - - - 0.98 0.74 0.39 0.85 0.15 0.23 0.55
SD 3 (d=24) [13] - - - 0.98 0.74 0.63 0.67 0.34 0.36 0.62

LlamaGen [64] - - - 0.71 0.34 0.21 0.58 0.07 0.04 0.32
Chameleon [66] - - - - - - - - - 0.39
LWM [37] - - - 0.93 0.41 0.46 0.79 0.09 0.15 0.47
SEED-X [18] - - - 0.97 0.58 0.26 0.80 0.19 0.14 0.49

Show-o [75]

- - - 0.95 0.52 0.49 0.82 0.11 0.28 0.53

Zs. ORM - - 0.99 0.63 0.63 0.84 0.19 0.39 0.61
Ft. ORM - - 0.99 0.72 0.65 0.84 0.25 0.33 0.63
Zs. PRM - - 0.98 0.51 0.54 0.82 0.11 0.23 0.53
Ft. PRM - - 0.98 0.55 0.54 0.83 0.13 0.29 0.55
PARM - - 0.99 0.77 0.68 0.86 0.29 0.45 0.67

- DPO - 0.96 0.70 0.50 0.82 0.30 0.43 0.62
- It. DPO - 0.98 0.72 0.53 0.84 0.40 0.46 0.65

Zs. ORM It. DPO - 0.99 0.79 0.63 0.85 0.44 0.50 0.70
Ft. ORM It. DPO - 0.98 0.80 0.62 0.83 0.59 0.54 0.72
PARM It. DPO - 0.98 0.83 0.64 0.84 0.59 0.62 0.74

- It. DPO Ft. ORM 0.98 0.80 0.62 0.83 0.59 0.54 0.72
- It. DPO PARM 0.97 0.75 0.60 0.83 0.54 0.53 0.69

Ft. ORM It. DPO Ft. ORM 0.98 0.84 0.64 0.85 0.66 0.52 0.75
PARM It. DPO PARM 0.99 0.86 0.67 0.84 0.66 0.64 0.77
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